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Summary. Computations of the second virial coefficient and thermodynamic 
equilibrium constant for the dimerization of argon are reported. These are based 
on accurate analytic representations of the Ar-Ar  interaction energy. Calcula- 
tions have been made using classical and quantal statistical mechanics and for 
the second virial coefficient the JWKB series as well. 
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1. Introduction 

The information reported here is part of an investigation we are conducting into 
the role of van der Waals complexes in the photochemistry of dense gases and 
liquids [1]. Of particular concern to us are the concentrations of these loosely 
bound aggregates. To calculate these concentrations it is necessary to determine 
not only the thermodynamic equilibrium constants of the various complexes but 
their fugacities as well. An evaluation of the fugacities requires the calculation of 
quantities similar to virial coefficients [1, 2]. 

In our search for approximate means of computing the concentrations of 
weakly bound complexes, we have found it useful to have available for compari- 
son very accurate calculations for a few simple reference systems. It is in this 
context that we decided to investigate the van der Waals complexes of argon. In 
this paper values are reported of the equilibrium constant and second virial 
coefficient for 4°Ar. Classical and quantal calculations have been performed 
using a very accurate analytical potential for the Ar-Ar interaction. 

This subject seems peculiarly appropriate for inclusion in a volume devoted 
to the memory of Joseph O. Hirschfelder, since the theory upon which our 
calculations are based was treated with special care and authority in "Molecular 
Theory of Gases and Liquids" [3]. To acknowledge our indebtedness to this 
outstanding treatise we have, wherever possible, adopted its notation. 

Because the binding energies of van der Waals complexes are so much 
smaller than those of the more familiar and thoroughly investigated strongly 



118 P.s. Dardi and J. S. Dahler 

bonded species, uncertainties naturally arise about the applicability of approxi- 
mations commonly used in dealing with the latter. These include uncertainties 
about the separability of rotational and vibrational motions and about the 
suitability of a classical in place of a quantal treatment of the internal, vibra- 
tional and rotational degrees of freedom. Also of concern is the sensitivity of the 
computational output to the accuracy with which the internal-state Hamiltonian 
(potential energy) is represented. Many of these issues already have been 
addressed in our recent report [4] on the equilibrium constants for formation of 
the van der Waals dimers Ar 2 and Mg 2. There it was found that most of the 
dynamical approximations which work so well for strongly bound species are 
seriously inadequate when applied to weakly bound complexes. However, at each 
level of dynamical approximation remarkably good agreement was found be- 
tween calculations based on classical and quantum mechanics. Although rela- 
tively small, the quantal corrections are significant, given the current accuracy of 
the A r - A r  interaction potential. 

Here we briefly shall review and summarize a portion of our earlier work on 
the equilibrium constant for dimer formation. This is then combined with a 
previously unpublished comparison of the classical and quantal second virial 
coefficients. The former of these is easy to calculate. The latter is not. To 
calculate the quantal second virial coefficient one must determine not only the 
bound-state eigenvalues of the two-body Hamiltonian operator but the corre- 
sponding set of phase shifts as well. JWKB calculations of the second virial 
coefficient also are included. 

2. Theoretical basis for the calculations 

2.1. Potential energy of A r - A r  interaction 

A number of accurate analytic potentials have been constructed for the A r - A r  
electronic ground state. The experimental data upon which all of these rely come 
from spectroscopic studies performed by Colbourn and Douglas [5], who re- 
solved a large number of vibrational-rotational levels. These investigators then 
calculated the corresponding R K R  potential and further refined this to repro- 
duce the observed spectra. 

The analytic potential used for most of the calculations in the present study 
is potential 4 of Koide, Meath, and Allnatt [6]. The formula for this potential (in 
atomic units) is: 

V(r) = [2.0073(1 + O.lr) - 1] exp(-2.1510r + 7.2920-  4.787r -~ + 1.724r -2) 

- [64.4899r--6 .~_ 1700.27r-8 + 50160.8r- 10]fArAr(r ) (2.1) 

with 

f A r A r ( r )  = exp [-0.4(9.081r -1 - 1)2]; r < 9.081 

= 1 ; r/> 9.081 

Classical second virial coefficients are calculated using two other accurate 
analytic potentials as described below. 
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2.2. Equilibrium constant for dimer&ation 

The equilibrium constant for the dimerization reaction 2M ~ M2 is given by the 
formula [4]: 

i ¢ ( ~ )  = ( z ~ / V ) l ( Z 1 / V )  2 (2.2) 
with V denoting the volume of the system. Z1 is the partition function of a single 
atom and Z b is the contribution of bound, dimer states to the two-particle 
partition function. 

We assume that the nuclear spins are equal to zero and that only the ground 
electronic state of the two-atom system is significantly populated. Both of these 
are appropriate to the case of 4°At. Consequently, Z 1 = V2-3 (with 2 2 = flh2/ 
2~m and fl = 1/kBT) and Z2* = 23/2V2-3Z~'int with Z bant the internal-state por- 
tion of Z~. The equilibrium constant then can be written in the form 

K( T) -- "~r'~213 7b'int (2.3) 

with 2r = (flh2/2n#) 1/2 denoting the thermal de Broglie wavelength associated 
with the reduced mass # = m/2. 

When the relative motion of the nuclei is treated classically, the internal-state 
part of Z b is given by: 

1 1  t 
The integral in this formula extends over the bound (b) states of the classical 
Hamiltonian function H =p2/2~ + V(r) associated with the electronic ground 
state, for which the potential energy is so chosen that V(oe) = 0. The factor of 
1/2 appearing in Eq. (2.4) is the symmetry factor due to the indistinguishability 
of the two identical nuclei. Equation (2.4) can be rewritten as: 

fJ t ( Z b 2 ' i n t ) c  L -~- 4X//~2r 3 dr r 2 e flV(r) erf[--flV(r)] 1/2 _ ( - f lV(r))  1/2 ear(r) 

(2.5) 

so that the corresponding classical approximation to the equilibrium constant 
becomes: 

N//~ 1/2 e~V(r) t Kcr(T) = 4x//-~ f~ dr r2 e -Bv<~) { - - ~ - e r f [ - f l V ( r ) ] m - ( - f l V ( r ) )  (2.6) 
) 

The parameter a appearing here is the value of the internuclear separation at 
which V(r) passes from positive (repulsive) to negative (attractive) values, i.e., 
v(~)  = 0. 

Because the spins of the 4°At nuclei are equal to zero, the wave functions of 
the dimer must be symmetric with respect to interchange of the nuclei. The term 
symbol for the electronic ground state of Ar is 1Zg+ and so this state is symmetric 
with respect to the inversion of the electrons and nuclei through the center of 
mass. Furthermore, the nuclear spin wave function is symmetric with respect to 
nuclear interchange. Consequently, the rotational states must be symmetric, that 
is, the rotational quantum number must be even. The quantal bound state 
partition function is therefore given by the expression: 

(zb'~t)Qu = Z (2J + 1) ~ e -~e~ (2.7) 
Je 
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with Y'j~ (. • .) indicating a sum over even values of J and where E~) denotes a 
bound state eigenvalue of the quantal Hamiltonian operator associated with the 
classical Hamiltonian function H. Recall that the zero of the potential is defined 
at infinite separation. Therefore, the electronic partition function is unity and the 
bound state eigenvalues are negative. 

2.3. Second virial coefficient 

According to Eq. 6.4-1 of Ref. [3], the second virial coefficient of a monatomic 
gas is given by the formula: 

B(T)  = -~-~  (2Z2 - Z~) --- ~ ~ ] (2.8) 

with (see previous subsection) 26Z~/V2= 1. The two-particle partition function 
Z2 may be decomposed into the sum of the two terms, Z b and Z~ rib, associated 
with bound and unbound states, respectively. Furthermore, Z'ff b can be written 
as the sum of Z ° and (Z~ nb - Z °) with Z ° denoting the partition function for 
two (hypothetical) non-interacting argon atoms. Thus, Eq. (2.8) becomes the 
sum of three terms: 

The first of these is: 

B(T)  = B°(T)  + Bb(r )  + Bunb(T) (2.9) 

v vz  ° 
B°(T)  = 2 Z~ (2.10) 

the second virial coefficient for two non-interacting atoms. The second: 

Bb(T) = -- VZb/Z~ (2.11) 

immediately can be identified with the negative of the dimerization equilibrium 
constant K(T),  given by Eq. (2.2). Finally: 

B"b(T) = V(Z~ "b - Z o) 
Z~ 2 (2.12) 

is the contribution to B(T)  due to the unbound states of two interacting argon 
atoms. 

We now briefly review the procedures for evaluating B °, B b and B "b. The 
quantal "ideal gas" two-particle partition function Z ° can be written in the form: 

(ZO)Qu = 12--6 f f  drl dr2 Wo(,,, (2.13) 

where [of. Ref. [3], Eq. (6.3-2)]: 

W°(r,, r2) = 1 _+ exp[-2~r22/2 2] (2.14) 

is the Slater sum for two non-interacting atoms. The upper and lower signs in 
Eq. (2.14) refer to Bose-Einstein and Fermi-Dirac statistics, respectively. From 
these formulas it follows that (cf. Ref. [3], Eq. (6.3-8)): 

B°°v (T)=  2 ~  ffdr, dr2(1 - W°)=-T  -~ fdr12 exp[--2zcr~2/2z]=-T - 1~ 23 (2.15) 
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Since (Z°)cL , 2 = ~Z1, the classical value of B°(T)  is identically equal to zero, 
i.e.: 

B°cL(T) = 0 (2.16) 

Furthermore, because (Z°)cL = 1 2 (Z~,b 5Z1 the quantity - Z ° ) / Z ~  simplifies to 
( z ~ ' b / z ~ -  1). In the classical case it is simpler to recombine Z ~  'b and Z2 b. Then 

1)~-6 ff dr  I dr  2 exp[-f lV]  it can be seen that: since (Z2)cL = ~ aj 

BcL(T) = 1 -1  f ~  - ~ V  drl dr2[e -~v(r'2) 1] 

fo = -2r~ dr r2[e-~V(r) _ 1] (2.17) 

This formula could be combined with BcL =BbcL + B'bcL = --KcL + B "bcL to 
generate values "-~ eunb v*  u C L .  

In the quantal case: 

(z~nb __ Zo)Qv = 23/2 V2 -3 2 (2 , /+  1) ~ [e -~E,~ _ e - ~ J ]  
Je " 

=23/2Va-3E(2J+l) f f  (2.18) 
,o l_ap dp J 

where dng/dp and dn°/dp, respectively, are the densities of states associated with 
the unbound states of two interacting and two non-interacting atoms. The 
difference [dng/dp-dn°/dp]  can be identified (of. Ref. [3], Eq. 1.7-14) with 
rc -~ d~b/dp where ~/s(p) denotes the phase shift of the J th  partial wave. There- 
fore, we find that: 

fo - ~  2r 2 (2J + 1) dp e-~p~/2U{dtlj(p)/dp} (2.19) B~g(T)  = -,3 
g~ 

Thus, the quantal second virial coefficient can be identified with the sum of 
three terms, B°(T) from Eq. (2.15), B~(T) = --K(T) from Eqs. (2.3) and (2.7), 
and unb BQu(T ) from Eq. (2.19). 

An alternative to this is the JWKB series: 

BjWKB(T) = BcL(T) + B°ou(T) + B(')(T) + B(2)(T) + " "  (2.20) 

which Uhlenbeck and Beth [7] obtained by using Kirkwood's [8] expansion (in 
powers of the Planck constant) of the Slater sum for interacting particles. Here, 
BcL and B ° are given by Eqs. (2.17) and (2.15), respectively, and (cf. Ref. [3], 
Eqs. (6.5-5) and (6.5-6)): 

h2 ~3 fo ~ B(1)(T) = 2~r ~ ~ dr r 2 e -ave)[V'(r)] 2 (2.21) 

(~2~2 ~41~00 foo { ~2 B ( 2 ) ( T ) = - 2 1 r \ m / i  drrae  -flv(~) [V"(r)]2 + [V'(r)] 2 

+ l~-~-~r [V'(r)]3- ~6 [g'(r)]4 } (2.22) 
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Table 1. Classical (CL) and quantal (QU) dimerization constants (in cm3/mol) for the KMA 
potential 

T (K) 

100 200 300 400 500 

CL 130.2 36.54 18.54 11.64 8.165 
QU 130.4 36.89 18.76 11.79 8.276 

wherein V'(r)=dV/dr and V"(r)=d2V/dr 2. In the JWKB case, as in the 
classical situation, it is simpler not to separate the bound and unbound contribu- 
tions to the two particle partition function. 

3. Computational results 

3.1. Equilibrium constant 

The classical equilibrium constant of Eq. (2.6) has been calculated for the KMA 
potential. Numerical values are presented in Table 1. 

The eigenvalues E ~  needed to evaluate the quantal equilibrium constant (see 
Eqs. (2.3) and (2.7)): 

KQu(T ) = (flh2/27z#) 3/2 ~" (2J + 1) ~ e -~e~-s (3.1) 
Je n 

were obtained by using the renormalized Numerov method of Johnson [9] to 
solve the radial Schr6dinger equation: 

d2~tnJdr 2 2# V(r) q- J(J2pr2 q- 1)h2 E~ll~nj=O (3.2) 

The calculated eigenvalues agree very well (within a few parts per thousand) with 
the five experimentally observed J = 0 eigenvalues. The eigenvalues we calculated 
for two different Lennard-Jones 6-12 potentials failed badly to reproduce 
accurately the experimental results and the equilibrium constants calculated for 
these potentials differed markedly (from 6-16%) from those associated with the 
KMA potential. These and other details of our equilibrium constant calculations 
have been reported elsewhere [4]. 

Quantal equilibrium constants for the KMA potential are presented in the 
second row of Table 1. 

3.2. Second virial coefficient 

3.2. I. Classical calculations. We have calculated the classical second virial co- 
efficient directly from Eq. (2.17), using the trapezoidal rule integration procedure 
with a step size of 0.004 Bohr. The integrations were truncated at values of r 
(usually on the order of 1000 Bohr) for which the integrand had become 
negligibly small. Calculations were performed using three accurate analytical 
representations of the Ar -Ar  interaction, namely, the KMA potential of Eq. 
(2.1) and two others, designated by their originators as HFDTCS2 [10] and 
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Table 2. Second virial coefficients (in cm3/mol) calculated according to the classical mechanical Eq. 
(2.17). Three accurate analytic representations of the Ar-Ar interaction potential have been used. 
These are indicated as follows; KMA refers to Eq. (2.1), I to the HFDTCS2 potential of Ref. [10] 
and H to the EHFACE2 potential of Ref. [ 11]. The experimental values are taken from Ref. [ 12] 

r (K)  

100 200 300 400 500 

Bcz (KMA) - 184.02 -48.340 - 15.438 - 1.0343 6.8698 
Bcz (I) - 183.91 - 48.289 - 15.441 - 1.0736 6.8075 
Bcz (II) - 184.11 -48.363 - 15.452 - 1.0546 6.8385 
Bex P --185.5_+1 -47.6_+1 --15.6__+0.5 --0.9+0.5 7.3-1-0.5 

EHFACE2  [11]. The calculations were converged to at least six significant figures 
so that the results displayed in Table 2 are accurate to all displayed figures. The 
tabular entries labeled BF~X~, are experimental values compiled by Dymond  and 
Smith [ 12]. 

A glance at Table 2 reveals that the differences among the classical virial 
coefficients associated with these three potential energy functions are small 
compared to the uncertainties of  the experimental data. It  is reasonable to expect 
that the numerical values of  the quantal and JWKB second virial coefficients for 
these three potentials also will differ very little one from the other. Consequently, 
we have limited our quantal and JWKB calculations to the K M A  potential of  
Eq. (2.1) for which we previously have computed the classical and quantal 
dimerization constants, cf. Table 1. 

3.2.2. Quantal calculations. The bound-state contribution to the quantal second 
virial coefficient is, as previously observed, given by the dimerization constant 
KQv = --B~v.  To determine the contribution associated with unbound states it 
is necessary to calculate the elastic scattering phase shifts ~IJ(P) from the radial 
Schr6dinger equation for a large number of  rotational states (partial waves) and 
a large range of  collision energies. To accomplish this we once again have used 
the renormalized Numerov  method. Details of  the procedure used to obtain the 
phase shifts are reported in a separate communication [13] along with calculated 
values of  the cross section for A r - A r  elastic collisions. Here our attention will be 
confined to calculational details directly related to the second virial coefficient. 

When trapezoidal rule integration and finite difference differentiation are 
applied to Eq. (2.19), it becomes: 

Bunb - 1 3 N p ~  
JMAX 1 

QU = --Tg •r E ( 2 J +  1 ) _ _  exp[--flpz+l/2/2lt][rl~j +~ -rl~s] (3.3) 
Je=O i=O 

Here the index i is the label of  a momentum (p) grid point and N~ is the total 
number of  these points. ~/°s is specified below= 

Our computational  procedure produces values of  the phase shifts, modulo ~, 
i.e., values restricted to the range ( - ~ / 2 ,  ~/2). Thus, a computed phase shift will 
vary smoothly with momentum until its value reaches +~/2 ,  at which point its 
value jumps abruptly by ~ ~ to the other end of the interval. These artificial 
jumps must be incorporated into the factors ~ +  1 - -  ~ r  of  (3.3). I f  the momentum 
step size is sufficiently small, the occurrence of  these jumps can be anticipated 
and taken into account. Difficulties arise in the neighborhoods of  resonances, for 
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as the energy passes through a resonance the value of the phase shift will execute 
a real jump on the order of n. The widths of the argon shape resonances that we 
have observed vary dramatically. Some are quite broad and therefore can be 
resolved by the procedure just described, using a momentum grid appropriate to 
obtain accurate results for the smooth portion of the phase shift. However, 
others are so awesomely sharp that there is no hope of locating them directly by 
the straightforward procedure of stepping along a reasonable momentum grid. 
Therefore, some real jumps of n easily can be overlooked. To correct for this, 
Eq. (3.3) is replaced with the modified formula: 

ounb__ - 1 3  Jmax  INP~ 1 
e v -  -re 2~ ~ (2 , /+  1) exp(-flpzi+ l/2/2/.t)(r/~ +1 - q~) 

.1~=o L i=0  

+ g  ~ exp(--~E~,k) (3.4) 
k = l  

Here n} is the number of unresolved resonances for the ,/th partial wave and E}k 
is the energy at which the kth of these occurs. The methods we have used to 
obtain the values of these quantities will now be described. 

First to be considered is the procedure for determining the number, n~,, of 
unresolved `/-wave resonances. The phase shift at zero energy is given by 
[14, 15]: 

r/s(0 ) = Nbrc (3.5) 

with N b denoting the number of bound states of the J th  partial wave, i.e., the 
number of bound states associated with the effective potential 
Vs(r) = V ( r ) +  h 2 j ( j  + 1)/2pr 2. Because the KMA potential becomes strongly 
repulsive as r tends to zero, Levinson's theorem [14, 15] is inapplicable and 
therefore cannot be used to determine the high energy limit of the phase shift. To 
obtain this information we have developed a new computational procedure. For 
a given choice of J and the highest energy of interest, we integrate the radial 
Schr6dinger equation, using both the KMA potential and the potential V(r) = O. 
The numbers of nodes and the phases of these two wavefunctions at the largest 
value of r determine what we shall call the "absolute phase shift." The difference 
between the value of this absolute phase shift and the phase shift determined by 
stepping along the momentum grid is directly proportional to n~, the number of 
resonances that were missed. 

The sharpest resonances are difficult to locate even when one knows that they 
are present. Thus, the phase shift calculated on a seemingly reasonable grid may 
fail to reveal the presence of the resonance. To find latent resonances of this sort 
we rely upon a fundamental characteristic of resonances [16]. As the momentum 
(energy) reaches the value associated with a particular shape resonance, the 
wavefunction suddenly will acquire an additional node within the metastable 
well. Therefore, a plot of the number of nodes versus momentum will exhibit a 
sudden jump by one in the immediate vicinity of a resonance. Using this as a 
guide, one can expand the momentum scale over a narrow range in order to 
resolve all but the very sharpest resonances. This is the method we have used to 
locate shape resonances of A r - A r  collisions that were too narrow to find by 
stepping along the momentum grid. The energies of all the resonances of the 
KMA potential are given in Table 3. Further details concerning the absolute 
phase shifts are reported elsewhere [ 13]. 
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Table 3. Resonance energies (in cm-2) of the KMA potential. The energies marked with asterisks (*) 
were resolved using the momentum grid for the momentum integration and therefore were not 
included in the factor ~ ~k exp(--/~E~-k) of Eq. (3.4) 

J E (cm -1) J E (cm -~) 

10 0.408 34 2.309, 
14 0.417 36 9.237, 
16 1.854 38 16.436, 
20 2.170 40 6.966, 
22 4.705 42 15.817, 
24 1.475 44 24.985, 
26 5.285 46 34.440 
28 9.212 48 44.019 
30 4.560, 13.22" 50 54.019 
32 9.964 52 63.939 

15.539 
21.324" 
26.881" 
23.863 
31.444 
39.038 

The accuracy of  ~unb ~'QV calculated according to Eq. (3.4) is determined by the 
number of  partial waves (JM~x) as well as by the momentum grid and the 
position grid used in integrating the radial Schr6dinger equation. The appropri-  
ate choices of  the momentum and position grids, themselves, are dependent on 
which partial wave (J) is being considered. The step sizes of  the r grid were taken 
to be d r = 0 . 3 4 1 3 0 ×  10 -2 Bohr ( J = 0 - 1 0 0 ) ,  dr=0.26545× 10 -2 Bohr 
(J  = 102-400) and dr = 0.22753 x 10 -2 Bohr ( J  = 402-600). 

Because the range of  the effective potential Vs(r) is so great, it is extremely 
difficult to integrate the Schr6dinger equation at low energies and nonzero values 
of  J. However, this low energy range contribution to the second virial coefficient 
becomes progressively smaller with increasing J. To cope with this problem, a 
larger maximum value of  the r coordinate has been used at low energies. 
Specifically, the range of  r extends from 1-197 Bohr at high energy and from 
1-591 Bohr at low energy. The dividing line between these ranges of  low and 
high energy has been chosen to lie at an energy equal to the value of  the 
J-dependent  effective potential Vj(r) at 50 Bohr. Contributions from energies 
less than the value of Vs(r) at 500 Bohr were discarded. The errors produced by 
these difficulties at low energy are very slight. 

The appropriate momentum grids are sensitively dependent on the value of 
J. For  small values of  J the contributions to BQ ~'b are due mostly to lower 
energies. As J increases, contributions from higher energies become relatively 
more important.  Also, for a given partial wave and a specified value of the 
computational  accuracy, different momentum step sizes may be appropriate to 
different ranges of  energy. Therefore, we have divided the total energy range 
arbitrarily into three selected parts, to each of  which are associated minimum 
and maximum energies. Within each of  these subdivisions a fixed momentum 
step size has been used. This is illustrated by Table 4, which contains a complete 
listing of  the momentum grids used in our calculations. 

1~ unb These grids in r and p produce individual partial wave contributions to ,_.Q~ 
with accuracies that vary from 3 to 4 significant figures for the highest values of  
J to 5 or more significant figures at the lowest values of  J. Because the 
contributions from large values of  J tend to be smaller than those from lower 
values of  J, the sums of  these contributions should be accurate to 4 or 5 
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Table 4. Momentum Grids. The energies are reported in Hartree units (one 
hartree = 2.195 x 105 cm -1 = 27.21 eV). The symbol Np indicates the number of momentum steps 
within the specified range of energy 

E.,io Emax Up 

J = o  0 0.5 ( -5)  200 
0.5 (--5) 0.25 (--2) 300 
0.25 ( - 2 )  0.5 (--1) 400 

J = 2 - 6  0 0.5 ( - 5 )  200 
0.5 ( - 5 )  0.25 (--2) 300 
0.25 (--2) 0.5 ( - 1 )  300 

J = 8  0 0.5 (--5) 200 
0.5 (--5) 0.25 (--2) 200 
0.25 ( - 2 )  0.5 (--1) 300 

J = 1 0 - 1 8  0 0.1 ( - 2 )  600 
0.1 ( - 2 )  0.1 ( - 1 )  250 
0.1 (--1) 0.5 (--1) 100 

J = 20-38 0 0.125( - 2) 600 
0.125(--2) 0.1 (--1) 250 
0.1 ( - 1 )  0.5 (--1) 100 

J = 40-58 0 0.15 (--2) 400 
0.15 (--2) 0.1 ( - 1 )  250 
0.1 ( - I )  0.5 (--1) 100 

J = 60-78 0 0.3 (--2) 300 
0.3 ( - 2 )  0.1 (--1) 200 
0.1 ( - 1 )  0.5 ( - 1 )  lO0 

J = 80-400 0 0.3 ( - 2 )  300 
0,3 ( - 2 )  0.1 (--1) 100 
o.1 ( -1 )  0.5 ( -1 )  lOO 

J = 402-600 0 0.3 (--2) 100 
0.3 (--2) 0.1 ( - 1 )  100 
0.1 ( - I )  0.5 (--1) 100 

significant figures. To illustrate the relative magnitudes of the contributions from 
different ranges of J, values of the partial sum: 

"]'MAX I Ip(JMm, JMAx)= ~ ( 2 J +  1) - -  exp(--~p~+l/z/2#)(n~ +1 --,~) 
Je ~ JMIN i= 1 

+ ~ 2 exp(-/?ES~) (3.6) 
k = l  

are presented in Table 5. 
This leads quite naturally to the question of convergence with respect to the 

value of JM.4x. Information relevant to this issue is shown in Table 6. The 
systematic error due to truncation of the J sum appears to be about 0.05 cm3/ 
tool at T = 500 K and about 0.02 cm3/mol at T = 100 K. At the higher tempera- 
tures this truncation is clearly the largest source of error. At the lower 
temperatures the error caused by J-sum truncation decreases in relative impor- 
tance and becomes comparable in magnitude to other sources of error. 

According to Eq. (2.9), Bou equals the sum of B °, B~v  = -Key  and uu,b ~QU" 
Values of  B ° are given in Table 7. The combination of these with the best values 
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Table 5. The dimensionless partial sums lp(JgzN, J~ax) defined by Eq. (3.6) 

127 

T (K) 

J ~ v  -- J~Ax 100 200 300 400 500 

0 -58  1487.1 --5258.8 --12862. --20264. --27275. 
60-78  1865.7 3531.0 3316.3 1977.3 17.745 
80-100 680.83 2237.9 3200.9 3265.0 2579.1 

102-200 466.81 2006.0 4195A 6371.5 8105.4 
202-300 43.321 178.87 416,01 763.11 1222.6 
302-400 10.460 42.463 96.944 174.93 277.52 
402-500 3.7080 15.027 34.117 61.187 96.450 
502-600 1.6305 6.6510 15.066 26.948 42.366 

Table 6. Convergence of BQv,'o'b in units of cm3/mol, with respect to JgAx 

T (K) 

J 100 200 300 400 500 

0-400  -- 52.010 - 11.053 3.5993 11.009 15.396 
0-500  - 52.053 -- 11.113 3.5243 10.922 15.298 
0-600  -- 52.071 -- 11.140 3.4912 10.883 15.254 

Table 7. Second virial coefficients and contributions thereto in cm3/mol. Calculations based on the 
K M A  potential 

T (K) 

100 200 300 400 500 

BcL --184.02 --48.340 -- 15.438 --1.0343 6.8698 
BQu -- 182.49 --48.030 -- 15.270 --0.9089 6.9784 
BjWKB --182.57 --48.081 --15.321 --0.9640 6.9185 
B ° --2.2424(--3)  --7.9279(--4) --4.3154(--4)  --2.8029(--4)  --2.0056(--4) 
B o) 1.4931 0.26934 0.12175 7.3554(--2) 5.1017(--2) 
B (2) --1.6171(--2)  --9.7523(--4)  --2.3798(--4) --9.4030(--5)  - - 4 . 7282 ( -5 )  

of l~ unb ,.,Q~ from Table 6 and the values of Ke~: from Table 1 has produced the 
values of Bey presented in Table 7. 

3.Z3. JWKB calculations. In the JWKB method the quantal second virial 
coefficient is expressed in terms of the classical second virial coefficient, B °, and 
a series of quantal corrections, ordered in ascending, even powers of the Planck 
constant. The first and second of these quantal corrections, given by Eqs. (2.21) 
and (2.22), have been evaluated by trapezoidal rule integration. These integrals 
were converged with respect to the step size in r and truncation of the upper limit 
of integration. The results are accurate to at least 3 or 4 significant figures. 
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Values of B (1) and B (2) a re  presented in Table 7, along with values of  BcL and 
B °. B °) is 2 to 3 orders of magnitude smaller than BcL and B (2) is 2 to 3 orders 
of magnitude smaller than B °). As expected, both of  these quantal corrections 
diminish in size as the temperature rises. At the higher temperatures the values 
of B ° fall between those of B (1) and B ~z~ but at T = 100 K B ° is smaller than B (2). 
The Table 7 entries labeled BswKs refer to sums of  the contributions BcL, B °, 
B °) and B (2), cf. Eq. (2.20). 

3.2.4. Comparison of classical, quantal and JWKB results. By comparing the 
classical second virial coefficients of Table 7 with the corresponding quantal and 
JWKB quantities, we see that the correction due to quantum mechanics ranges 
from 0.1 cma/mol or less at the higher temperatures to more than 1 cm3/mol at 
the lower temperatures. Although this correction is relatively small compared to 
BcL, it is large in comparison with the differences among the BcL values 
computed for several accurate analytic representations of the A r - A r  interaction 
potential, see Table 2. Therefore, the accuracy with which this potential is known 
is sufficient to make the quantum mechanical effects significant. 

It is interesting to compare the quantal and JWKB entries in Table 7. The 
discrepancies at the higher temperatures can be blamed upon errors due to 

uunb Therefore, it is truncation of the sum over partial wave contributions to ~'Qv. 
reasonable to expect that the JWKB results are the more accurate at high 
temperatures. 

The cause of the discrepancies at lower temperature is less easy to identify. 
The partial wave truncation does not seem to account for all of  the discrepancy, 
and the numerical error in evaluating the JWKB integrals should be negligible. 
Furthermore, truncation of the asymptotic, JWKB series would seem to be an 
unlikely source of errors as large as the discrepancies appearing in Table 7. The 
remaining possibility is of a numerical error in BQu other than the systematic 
error due to truncation of the partial wave sum. This possibility cannot be 
dismissed out of hand since the differences between the low temperature values 
of BQu and BswKn are, indeed, of about the same magnitude as the maximum 
numerical error anticipated in the calculation of Bey. Without doing further 
calculations we are unable to say with certainty whether Bet~ or BjwK~ is the 
more accurate at the lower temperatures included in Table 7. 

To the best of our knowledge, the only previous quantal calculation of a 
second virial coefficient is deBoer and Michels' [17] study of helium. Our 
calculations for argon are much more accurate than theirs due to the much more 
modern calculational facilities that we had at our disposal. However, it is 
important to remember that for Ar and the temperature range considered here 
the much less costly JWKB calculations have produced estimates of the second 
virial coefficient that are likely to be just as accurate as the quantal estimates. It 
is amazing that the relatively simple JWKB expressions account so well for the 
quantum corrections considering that bound states and resonances contribute 
quite significantly to the quantum results. 

As the Ar potentials become even better and more accurate experimental 
data become available, it may be worthwhile to refine the quantal calculations in 
order to sort out the discrepancies we have found between the quantal and 
JWKB results. 
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